The Effect of Exogenous Zinc Concentration on the Responsiveness of MC3T3-E1 Pre-Osteoblasts to Surface Microtopography: Part I (Migration)
نویسندگان
چکیده
Initial cell-surface interactions are guided by the material properties of substrate topography. To examine if these interactions are also modulated by the presence of zinc, we seeded murine pre-osteoblasts (MC3T3-E1, subclone 4) on micropatterned polydimethylsiloxane (PDMS) containing wide (20 µm width, 30 µm pitch, 2 µm height) or narrow (2 µm width, 10 µm pitch, 2 µm height) ridges, with flat PDMS and tissue culture polystyrene (TC) as controls. Zinc concentration was adjusted to mimic deficient (0.23 µM), serum-level (3.6 µM), and zinc-rich (50 µM) conditions. Significant differences were observed in regard to cell morphology, motility, and contact guidance. We found that cells exhibited distinct anisotropic migration on the wide PDMS patterns under either zinc-deprived (0.23 µM) or serum-level zinc conditions (3.6 µM). However, this effect was absent in a zinc-rich environment (50 µM). These results suggest that the contact guidance of pre-osteoblasts may be partly influenced by trace metals in the microenvironment of the extracellular matrix.
منابع مشابه
The Effect of Exogenous Zinc Concentration on the Responsiveness of MC3T3-E1 Pre-Osteoblasts to Surface Microtopography: Part II (Differentiation)
Osseointegration of bone implants is a vital part of the recovery process. Numerous studies have shown that micropatterned geometries can promote cell-substrate associations and strengthen the bond between tissue and the implanted material. As demonstrated previously, exogenous zinc levels can influence the responsiveness of pre-osteoblasts to micropatterns and modify their migratory behavior. ...
متن کاملZinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells
Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synth...
متن کاملDihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells
Objective(s): The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells. Materials and Methods: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro exper...
متن کاملPromoting Effect of Pinostrobin on the Proliferation, Differentiation, and Mineralization of Murine Pre-osteoblastic MC3T3-E1 Cells.
Pinostrobin (PI), a natural flavonoid found in a variety of plants, is well known for its rich pharmacological activities. However, its osteogenic function remains unclear. The aim of this study is to evaluate the effect of PI on the proliferation, differentiation, and mineralization of murine pre-osteoblastic MC3T3-E1 cells in vitro using MTT, alkaline phosphatase (ALP) activity, the synthesis...
متن کاملSynthesis, in vitro evaluation and biological studies of copper-containing 58S bioactive glass
Cu-substituted 58S bioactive glasses (0-10%mol CuO) were synthesized by sol-gel method and the effect of copper substitution for calcium on their biodegradability, bone-like apatite formation, cell proliferation, alkaline phosphatase activity of M3T3-E1 osteoblast cells and antibacterial efficiency were investigated. The results of x-ray diffraction (XRD) and Fourier transform infrared spectros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013